Interior a priori estimates for supersolutions of fully nonlinear subelliptic equations under geometric conditions
Corresponding Author
Alessandro Goffi
Dipartimento di Matematica “Tullio Levi-Civita”, Università degli Studi di Padova, Padua, Italy
Correspondence
Alessandro Goffi, Dipartimento di Matematica “Tullio Levi-Civita”, Università degli Studi di Padova, via Trieste 63, 35121 Padua, Italy.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Alessandro Goffi
Dipartimento di Matematica “Tullio Levi-Civita”, Università degli Studi di Padova, Padua, Italy
Correspondence
Alessandro Goffi, Dipartimento di Matematica “Tullio Levi-Civita”, Università degli Studi di Padova, via Trieste 63, 35121 Padua, Italy.
Email: [email protected]
Search for more papers by this authorAbstract
In this note, we prove interior a priori first- and second-order estimates for solutions of fully nonlinear degenerate elliptic inequalities structured over the vector fields of Carnot groups, under the main assumption that is semiconvex along the fields. These estimates for supersolutions are new even for linear subelliptic inequalities in nondivergence form, whereas in the nonlinear setting they do not require neither convexity nor concavity on the second derivatives. We complement the analysis exhibiting an explicit example showing that horizontal regularity of Calderón–Zygmund type for fully nonlinear subelliptic equations posed on the Heisenberg group cannot be in general expected in the range , being the homogeneous dimension of the group.
REFERENCES
- 1F. Abedin, C. E. Gutiérrez, and G. Tralli, Harnack's inequality for a class of non-divergent equations in the Heisenberg group, Comm. Partial Differential Equations 42 (2017), no. 10, 1644–1658.
- 2F. Abedin and G. Tralli, Harnack inequality for a class of Kolmogorov–Fokker–Planck equations in non-divergence form, Arch. Ration. Mech. Anal. 233 (2019), no. 2, 867–900.
- 3A. D. Aleksandrov, Impossibility of general estimates of solutions and of uniqueness conditions for linear equations with norms weaker than those of , Vestnik Leningrad. Univ. 21 (1966), no. 13, 5–10.
- 4O. Alvarez, J.-M. Lasry, and P.-L. Lions, Convex viscosity solutions and state constraints, J. Math. Pures Appl. (9) 76 (1997), no. 3, 265–288.
- 5M. Bardi and F. Dragoni, Convexity and semiconvexity along vector fields, Calc. Var. Partial Differential Equations 42 (2011), no. 3–4, 405–427.
- 6S. Biagi, A. Bonfiglioli, and M. Bramanti, Global estimates in Sobolev spaces for homogeneous Hörmander sums of squares, J. Math. Anal. Appl. 498 2021,. 1,. 124935, 19.
- 7A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007.
- 8J. E. M. Braga, A. Figalli, and D. Moreira, Optimal regularity for the convex envelope and semiconvex functions related to supersolutions of fully nonlinear elliptic equations, Comm. Math. Phys. 367 (2019), no. 1, 1–32.
- 9J. E. M. Braga and D. Moreira, Inhomogeneous Hopf–Oleĭnik lemma and regularity of semiconvex supersolutions via new barriers for the Pucci extremal operators, Adv. Math. 334 (2018), 184–242.
- 10X. Cabré, Nondivergent elliptic equations on manifolds with nonnegative curvature, Comm. Pure Appl. Math. 50 (1997), no. 7, 623–665.
- 11X. Cabré and L. A. Caffarelli, Interior regularity theory for a class of nonconvex fully nonlinear elliptic equations, J. Math. Pures Appl. (9) 82 (2003), no. 5, 573–612.
- 12L. Caffarelli, J. J. Kohn, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge–Ampère, and uniformly elliptic, equations, Comm. Pure Appl. Math. 38 (1985), no. 2, 209–252.
- 13L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. (2) 130 (1989), no. 1, 189–213.
- 14L. A. Caffarelli and X. Cabré, Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995.
10.1090/coll/043 Google Scholar
- 15A. Cutrì and N. Tchou, Barrier functions for Pucci–Heisenberg operators and applications, Int. J. Dyn. Syst. Differ. Equ. 1 (2007), no. 2, 117–131.
- 16D. Danielli, N. Garofalo, and D.-M. Nhieu, Notions of convexity in Carnot groups, Comm. Anal. Geom. 11 (2003), no. 2, 263–341.
- 17D. Danielli, N. Garofalo, and D.-M. Nhieu, On the best possible character of the norm in some a priori estimates for non-divergence form equations in Carnot groups, Proc. Amer. Math. Soc. 131 (2003), no. 11, 3487–3498.
- 18L. C. Evans, Adjoint and compensated compactness methods for Hamilton–Jacobi PDE, Arch. Ration. Mech. Anal. 197 (2010), no. 3, 1053–1088.
- 19X. Fernández-Real and X. Ros-Oton, Regularity theory for elliptic PDE, Zurich Lectures Notes in Advanced Mathematics, European Mathematical Society, 2022.
10.4171/zlam/28 Google Scholar
- 20G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), no. 2, 161–207.
- 21N. Garofalo, A note on monotonicity and Bochner formulas in Carnot groups, to appear in Proc. Roy. Soc. Edinburgh Sect. A, arXiv:2204.13073, 2022.
- 22Y. Giga, S. Goto, H. Ishii, and M.-H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J. 40 (1991), no. 2, 443–470.
- 23C. E. Gutiérrez and F. Tournier, Harnack inequality for a degenerate elliptic equation, Comm. Partial Differential Equations 36 (2011), no. 12, 2103–2116.
- 24C. Imbert, Convexity of solutions and estimates for fully nonlinear elliptic equations, J. Math. Pures Appl. (9) 85 (2006), no. 6, 791–807.
- 25N. J. Korevaar, Convex solutions to nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 32 (1983), 603–614.
- 26P.-L. Lions and M. Musiela, Convexity of solutions of parabolic equations, C. R. Math. Acad. Sci. Paris 342 (2006), no. 12, 915–921.
10.1016/j.crma.2006.02.014 Google Scholar
- 27Q. Liu, J. J. Manfredi, and X. Zhou, Lipschitz continuity and convexity preserving for solutions of semilinear evolution equations in the Heisenberg group, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 80, 25.
- 28Q. Liu and X. Zhou, Horizontal convex envelope in the Heisenberg group and applications to sub-elliptic equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 22 (2021), no. 4, 2039–2076.
- 29A. Montanari, Harnack inequality for a subelliptic PDE in nondivergence form, Nonlinear Anal. 109 (2014), 285–300.
- 30C. Pucci, Operatori ellittici estremanti, Ann. Mat. Pura Appl. (4) 72 (1966), 141–170.
10.1007/BF02414332 Google Scholar
- 31G. Tralli, A certain critical density property for invariant Harnack inequalities in H-type groups, J. Differential Equations 256 (2014), no. 2, 461–474.
- 32N. S. Trudinger, Fully nonlinear, uniformly elliptic equations under natural structure conditions, Trans. Amer. Math. Soc. 278 (1983), no. 2, 751–769.